МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ ЗАБАЙКАЛЬСКОГО КРАЯ Государственное учреждение дополнительного образования «Технопарк Забайкальского края»

Принята на заседании методического (пед-го) совета Протокол № 10 от «24 » «Зуста 2021 года

дополнительная общеразвивающая программа

«Промдизайн-квантум / Промробоквантум»

(базовый модуль)

Направленность: техническая Возраст обучающихся: от 11 до 17 лет Срок реализации программы: 3 недели Обшее количество часов: 36 часов

Разработчики: Гомбоев Дашибал Иванович, Найданов Батор Владимирович, педагоги дополнительного образования Протокол согласований дополнительной общеразвивающей программы «Промдизайн-квантум/ Промробоквантум» (базовый модуль) «СОГЛАСОВАНО» Методист ГУ ДО «Технопарк Забайкальского края» ________ А.А. Забелина

Дополнительная общеразвивающая программа составлена в соответствии с действующими федеральными, региональными нормативными правовыми актами и локальными актами ГУДО «Технопарк Забайкальского края»

Данная программа утверждена на заседании методического (пед-го) совета «2+» из цета 2024 года Протокол № 40

Раздел 1. Комплекс основных характеристик программы

1.1. Пояснительная записка

Промышленная робототехника - это инженерная дисциплина, посвященная созданию и изучению роботов для автоматизации производственных процессов.

Актуальность программы «Промдизайн-квантум / Промробоквантум» обусловлена необходимостью использования принципов и приемов дизайна в проектной и исследовательской работе, а также подготовке молодых людей к выбору будущей профессиональной деятельности. Данная программа является первым шагом на пути к росту знаний учащихся о роли промышленной робототехники в современном производстве и перспективных направлениях развития в сфере роботизации промышленности.

Программа ориентирована на изучение и овладение разными видами роботизированного и манипуляционного оборудования.

Направленность программы - техническая.

Уровень программы – базовый.

Особенности программы: новые образовательные технологии и методики, позволяющие решить существующие проблемы в ранней профориентации, дополнительном образовании в области промышленного дизайна, робототехники, научно-техническом творчестве детей и подростков.

Возраст учащихся: от 11 до 17 лет.

Наполняемость групп: до 12 человек.

Форма и режим занятий

Формы занятий:

- практические;
- теоретические;
- самостоятельная работа, творческие конкурсы, проектные работы;
- научно-практическая конференция;
- соревнования по робототехническим и инженерным дисциплинам. *Формы организации деятельности:* индивидуальные, групповые.

Объем и сроки освоения программы: 36 часов.

1.2. Цель и задачи программы

Основная цель программы - привлечь обучающихся к процессу дизайнпроектирования, программированию, изобретательству и инженерии, промышленной робототехники; показать перспективность данных направлений. Реализация модуля позволит раскрыть таланты обучающихся в данных областях.

Задачи программы:

Личностные задачи:

- развить аналитические способности и творческое мышление (техническое, пространственно-образное, критическое);
- развить коммуникативные умения (изложение мыслей в чёткой логической последовательности, отстаивание своей точки зрения, анализ ситуации и

самостоятельный поиск ответов на вопросы путём логических рассуждений) и умение работать в команде;

- воспитать аккуратность, трудолюбие, дисциплинированность при выполнении работ, бережное отношение к оборудованию; Метапредметные задачи:
- совершенствовать умение адекватно оценивать и представлять результаты совместной или индивидуальной деятельности в процессе создания и презентации объекта промышленного дизайна;
- научить практической работе с электронными компонентами; необходимой для изготовления, проведения ремонта или технического обслуживания конкретной конструкции;
- сформировать понимание причин и необходимости повсеместной роботизации производств, дать представление о сферах применения промышленных роботов.

Предметные задачи:

- познакомить с процессом создания дизайн-проекта, его основными этапами, выработка практических навыков осуществления процесса дизайнерского проектирования;
- сформировать основы дизайн-мышления в решении и постановке творческих аналитических задач проектирования предметной среды;
- сформировать навыки дизайнерского скетчинга, 3D-моделирования и прототипирования, основ макетирования из простых материалов;
- сформировать начальные навыки создания законченного ПО и навыки офлайн-программирования с использованием высокоуровневых языков программирования.

1.3. Содержание программы

Учебно-тематический план «Промдизайн-квантум»

	Название раздела,	Количество часов			Формы
No	Темы	Всего	Теория	Практика	аттестации
Π/Π					(контроля) по
					разделам
1	Раздел 1.	2	1	1	
	Speculative Design.				
1.1	Знакомство. Введение в	2	1	1	
	образовательную				
	программу, техника				
	безопасности,				
	знакомство с				Устный опрос
	оборудованием				эстный опрос
	мобильного				
	кванториума.				
	Идея. Методика				
	формирования идеи				
2	Раздел 2. Урок	4	2	2	
	рисования				

2.1	Урок рисования (перспектива, линия, штриховка) в приложении Scetchbook Autodesk.	4	2	2	Работа с графическим планшетом
3	Раздел 3. Векторная графика и полиграфия	6	3	3	
3.1	Создание векторов в графическом редакторе Corel Draw	4	2	2	Работа с векторами
3.2	Работа на лазерном станке	2	1	1	Создание изделий из фанеры
	Раздел 4. Трехмерное моделирование	6	3	3	
4.1	Установочное занятие. Знакомство с аддитивными технологиями	2	1	1	Устный опрос
4.2	Работа в программе по 3D моделированию Blender	2	1	1	Создание трехмерной модели
4.3	Работа на 3D-принтере	2	1	1	Создание изделий из пластика
		18	9	9	

Содержание учебного плана

Раздел 1. Speculative Design

На основе входных условий в социальной сфере и в сфере развития технологий формируется идея нового продукта, создаётся его макет и презентуется разработанный продукт.

Тема 1.1 Знакомство. Введение в образовательную программу, техника безопасности, знакомство с оборудованием мобильного кванториума.

Теоретическая часть: Идея. Методика формирования идеи.

Практическая часть: Наставник разбивает обучающихся по группам, состоящим из двух человек. Каждая группа выбирает два условия из будущего - в социальной сфере и в сфере развития технологий. Опираясь на эти условия нужно создать карту ассоциаций (Mind Map). Причём в каждом последующем внешнем круге ассоциации к словам из предыдущего круга.

Таким образом появляется многоуровневый набор ассоциаций.

идея нового продукта, помогающего существовать человеку в заданных в начале проекта условиях. В конце занятия каждая группа выступает с презентацией своей идеи.

Раздел 2. «Урок рисования»

Teма 2.1 Урок рисования (перспектива, линия, штриховка) в приложении Scetchbook Autodesk.

Теоретическая часть: Осваиваются основные навыки дизайнерского скетчинга (эскизирования). Скетчинг рассматривается как инструмент быстрой визуализации идей.

Практическая часть: Работа с перспективой, линией, композицией; светотенью, штриховкой, техника работы маркером; передача различных материалов.

Раздел 3. Векторная графика и полиграфия

Тема 3.1 Создание векторов в графическом редакторе Corel Draw.

Теоретическая часть: Изучение векторной графикой в графическом редакторе Corel Draw.

Практическая часть: Обучающиеся под контролем наставника создают вектора для изделий из материалов предназначенных для резки на лазерном станке.

Тема 3.2 Работа на лазерном станке.

Теоретическая часть: Знакомство с лазерным оборудованием.

Практическая часть: Обучающиеся под контролем наставника создают вектора для изделий из материалов, предназначенных для резки на лазерном станке.

Краткое содержание: Лазерное оборудование функционирует при помощи электронных компонентов, команды которым отдает компьютерная программа. Независимо от того, какую операцию планируется выполнять (гравировку, резку, маркировку и т. д.), необходимо сначала создать модель заготовки или изделия в цифровом формате. Указывается также тип материала, с которым будет работать станок, и его толщина. Настройка фокусного расстояния, зеркал и линзы.

Раздел 4. Трехмерное моделирование.

Тема 4.1 Установочное занятие. Знакомство с аддитивными технологиями.

Теоретическая часть: Знакомство с основными принципами аддитивных технологий, основами трехмерной графики. Аддитивными называют множество технологий, позволяющих изготовить модели, созданные с помощью компьютерной графики, методом послойного наращивания (FDM/FFF/SLS/SLA печать). Эти технологии позволяют материализовать виртуальные объекты, «распечатав» их специализированными станками с ЧПУ (3D принтеры).

Практическая часть: Изучение аддитивных технологий. Виды и типы создания трехмерных объектов.

Тема 4.2 Работа в программе по 3D моделированию Blender.

Теоретическая часть: Основы 3D-моделирования в программе Blender. Знакомство с принципами моделирования. Начало построения трёхмерной модели. 3D-моделирование.

Практическая часть: Создание 3D-моделей. Работа с интерфейсом программы Blender.

Тема 4.3 Работа на 3D-принтере.

Теоретическая часть: Работа в слайсере 3D-моделей Ultimaker Cura. Подготовка 3D-моделей на печать.

Практическая часть: Настройка 3D принтера, Загрузка пластика для принтера. Работа в слайсере 3D-моделей Ultimaker Cura. Подготовка 3D-моделей на печать.

Учебный тематический план «Промробо-квантум»

№ п/п	Название		Формы		
	раздела, темы	Всего	<u>Количест</u> Теория	Практика	аттестаци и (контроля)
					по разделам
1	Раздел 1. Вводное занятие.	2	2	0	
1.1	Ознакомление с курсом обучения. Основы изобретательства и инженерии. ТБ.	2	2	0	Устный опрос
2	Раздел 2. Конструировани е.	2	1	1	
2.1.	Знакомство с конструкторами. Сборка роботов	2	1	1	Устный опрос
3	Раздел 3. Алгоритм работы датчиков Lego EV3	12	6	6	
3.1	Датчик касания	2	1	1	Работа с датчиками
3.2	Гироскопический датчик	2	1	1	Работа с датчиками
3.3	Ультразвуковой датчик	4	2	2	Работа с датчиками
3.4	Датчик цвета	4	2	2	Работа с датчиками
4	Раздел 4. Итоговый блок	2	2	0	
4.1	Итоговое занятие	2	2	0	Самостояте льная работа
Ит	0Г0:	18	11	7	

Содержание учебного плана

Раздел 1. Вводное занятие. (2 часа)

Теоретическая часть: Знакомство с учащимися. Ознакомление с курсом обучения. Основы изобретательства и инженерии. ТБ.

Раздел 2. Конструирование. (2 часа).

Тема 2.1. Знакомство с конструкторами. (2 часа)

Теоретическая часть: Ознакомление с наборами Lego EV3.

Практическая часть: Освоение базового набора, сборка роботов.

Раздел 3. Алгоритм работы датчиков Lego EV3 (12 часов).

Тема 3.1. Датчик касания. (2 часа).

Теоретическая часть: Ознакомление с датчиком касания. Принцип и режимы работы датчика касания.

Практическая часть: Программирование роботов в программе Lego Mindstorms Education.

Тема 3.1. Гироскопический дачтик. (2 часа).

Теоретическая часть: Знакомство с гироскопическим датчиком. Принцип и режимы работы гироскопического датчика (измерение угла вращения робота). Практическая часть: Программирование роботов в программе Lego Mindstorms Education.

Тема 3.1. Ультразвуковой датчик. (4 часа).

Теоретическая часть: Ознакомление с датчиком касания. Принцип и режимы работы ультразвукового датчика (измерение расстояния до препятсвия).

Практическая часть: Программирование роботов в программе Lego Mindstorms Education.

Тема 3.1. Датчик цвета. (4 часа).

Теоретическая часть: Ознакомление с датчиком касания. Принцип и режимы работы датчика цвета (измерение яркости отраженного света, яркости внешнего освещения, определение цвета).

Практическая часть: Программирование роботов в программе Lego Mindstorms Education.

Раздел 4. Итоговый блок. (2 часа)

Итоговое занятие. Подведение итогов работы за период обучения. (2 часа)

1.4. Планируемые результаты

Личностные результаты:

- развитие аналитических способностей и творческого мышления (технического, пространственно-образного, критического);
- развитие коммуникативных умений (изложение мыслей в чёткой логической последовательности, отстаивание своей точки зрения, анализ ситуации и самостоятельный поиск ответов на вопросы путём логических рассуждений) и умения работать в команде;
- воспитание аккуратности, трудолюбия, дисциплинированности при выполнении работ, бережного отношения к оборудованию;

Метапредметные результаты:

- совершенствование умения адекватно оценивать и представлять результаты совместной или индивидуальной деятельности в процессе создания и презентации объекта промышленного дизайна;
- умение выполнять практическую работу с электронными компонентами, необходимой для изготовления, проведения ремонта или технического обслуживания конкретной конструкции;
- понимание учащимися причин и необходимости повсеместной роботизации производств, приобретение представления о сферах применения промышленных роботов.

Предметные результаты:

- знакомство с процессом создания дизайн-проекта, его основными этапами, приобретение практических навыков осуществления процесса дизайнерского проектирования;
- формирование основ дизайн-мышления в решении и постановке творческих аналитических задач проектирования предметной среды;
- формирование навыков дизайнерского скетчинга, 3D-моделирования и прототипирования, основ макетирования из простых материалов;
- формирование начальных навыков создания законченного ПО и навыков офлайн-программирования с использованием высокоуровневых языков программирования.

Раздел 2. Комплекс организационно-педагогических условий реализации программы

2.1. Формы аттестации

Формы отслеживания и фиксации образовательных результатов

Контроль освоения учащимися разделов программы осуществляется путем оценивания следующих компетенций:

- Soft Skills
- умение строить работу исходя из принципов CDIO, SCRUM;
- знание основ и принципов теории решения изобретательских задач;
- умение работать в команде: планировать время, распределять роли и т.д.;
- умение ориентироваться в информационном пространстве;
- уровень сформированности технического мышления;
- способность творчески решать технические задачи;
- способность применения теоретических знаний на практике;
- эргономика;
- самомотивация;
- умение презентовать свою работу;
- аккуратность и дисциплина.
- Hard Skills
- компьютерная грамотность;
- владение базовыми навыками работы в современном программном обеспечении;

- уметь работать с оборудованием (манипуляторы с параллельно-плоскостной и угловой кинематикой, многокомпонентные робототехнические системы и др.)

Формы подведения итогов реализации программы: итоговые занятия, демонстрация собранных моделей, участие в конкурсах разного уровня, защита творческих проектов.

2.2. Оценочные материалы

Реализация дополнительной общеразвивающей программы «Промдизайн-квантум / Промробоквантум» предусматривает входной, текущий (промежуточный) и итоговый контроль учащихся.

Входной контроль проводится с целью выявления уровня подготовки учащихся и осуществляется в форме наблюдения и анализа умений и навыков обучающихся на начальном этапе обучения по программе.

Цель **текущего (промежуточного) контроля** - анализ усвоения учащимися тем и разделов программы. Текущий контроль осуществляется путём решения учащимися образовательных кейсов, самостоятельных работ, через анализ качества выполненных творческих работ.

Итоговый контроль проводится с целью усвоения учащимися программного материала в целом и его уровня. Реализуется посредством защиты творческих проектов, а также учёта результативности и активности участия в различных мероприятиях, в том числе при решении образовательных кейсов.

Оценка результатов деятельности производится по трем уровням:

- «Низкий»: работа не закончена, основные цели не достигнуты, слабо прослеживается заинтересованность в выполнении задач.
- «Средний»: учащийся выполнил основные цели работы, но имеют место недоработки или отклонения по срокам;
- «Высокий»: работа носит творческий, самостоятельный характер и выполнена полностью в планируемые сроки, достигнута цель, выполнены задачи;

Методы контроля:

- устный опрос;
- самостоятельная работа при решении образовательных кейсов;
- оценка защиты проектов.

2.3. Условия реализации программы

Материально-технические условия реализации программы

Требования к помещению для занятий: помещение кабинета по площади, освещению, вентиляции и отоплению, размещению технологического оборудования полностью соответствует требованиям СанПиН. Помещение обеспечено средствами первичного пожаротушения.

Мебель: рабочие столы и стулья, стол руководителя, шкафы для хранения материалов и инструментов, стеллажи для творческих работ.

Материалы:

- набор карточек с новостями из будущего;

- карта ассоциаций (Mind Map);
- карта сценариев развития (Future Forecast);
- карта фильтров;
- бумага (формат А4 или А3);
- черные шариковые ручки, карандаши разной твердости, ластик;
- ножницы;
- линейка металлическая;
- профессиональные маркеры для дизайнерского скетчинга (маркеры, которыми можно делать плавные переходы от светлого к тёмному, различных цветов, например, COPIC или Letraset);

Оборудование:

- графический планшет;
- персональные компьютеры для работы с предустановленной операционной системой и специализированным ПО;
- мышь USB;
- мультимедийное оборудование (экран +проектор, интерактивная панель) Профильное оборудование:
- Программное обеспечение
- Наборы для конструирования
- Наборы для создания роботов
- Манипуляторное оборудование
- Презентационное оборудование
- Интерактивный комплект
- Поле для презентации
- Поле для тренировки
- 3D-принтер учебный с принадлежностями
- ПО 3Д моделирования

Учебно-информационное обеспечение программы

Нормативно-правовые акты и документы:

- 1. Федеральный закон от 29 декабря 2012 года № 273-ФЗ «Об образовании в Российской Федерации».
- 2. Приказ Министерства образования и науки Российской Федерации от 9 ноября 2018 г. № 196 «Об утверждении порядка организации и осуществления образовательной деятельности по дополнительным общеобразовательным программам»
- 3. Постановление Главного государственного санитарного врача Российской Федерации от 28.09.2020 №28 «Об утверждении санитарных правил СП 2.4.3648-20 «Санитарно-эпидемиологические требования к организациям воспитания и обучения, отдыха и оздоровления детей и молодежи».
- 4. Порядок организации и осуществления образовательной деятельности по дополнительным общеобразовательным программам (утвержден Приказом

Министерства образования и науки РФ от 09 ноября 2018г. №196).

- 5. Указ Президента Российской Федерации «О национальных целях развития Российской Федерации на период до 2030 года».
- 6. Приказ Министерства просвещения РФ «Об утверждении Целевой модели региональных систем дополнительного образования детей» от 03 сентября 2019 года №467.
- 7. Письмо Минпросвещения России от 07.05.2020г № ВБ-976/04 «О реализации курсов внеурочной деятельности, программ воспитания и социализации, дополнительных общеразвивающих программ с использованием дистанционных образовательных технологий» (вместе с «Рекомендациями…»)
- 8. Положение о порядке разработки и реализации дополнительной общеразвивающей программы ГУДО «Технопарк Забайкальского края».
- 9. Положение об аттестации учащихся ГУДО «Технопарк Забайкальского края».
- 10. Промробоквантум тулкит. Мадин Артурович Шереужев. 2-е изд., перераб. и доп. М.: Фонд новых форм развития образования, 2019 –60 с.

Кадровое обеспечение программы

Программа «Промдизайн-квантум / Промробо» реализуется педагогами дополнительного образования, имеющими высшее профессиональное образование или курсовую подготовку в области, соответствующей профилям программы, и постоянно повышающими уровень профессионального мастерства.

2.4. Учебно-методическое обеспечение программы

Реализация программы «Промдизайн-квантум / Промробоквантум» предполагает следующие формы организации образовательной деятельности: практические и теоретические занятия. Применяются следующие формы организации образовательной деятельности:

- практическое занятие;
- занятие соревнование;
- воркшоп (рабочая мастерская);
- подготовка и защита проекта.

При реализации программы используются следующие методы и приемы обучения: словесный, наглядный, практический, кейс-метод, проектная деятельность, датаскаутинг.

Виды учебной деятельности:

- просмотр и обсуждение учебных фильмов, презентаций, роликов;
- анализ проблемных учебных ситуаций;
- проведение исследовательского эксперимента.
- поиск необходимой информации в учебной и справочной литературе, а также в сети интернет;
- выполнение практических работ;

- создание и защита проекта.

Образовательный процесс обеспечивается следующими дидактическими материалами:

- подборка дидактических материалов по темам.
- электронные презентации, видеоролики.

2.5. Календарно-учебный график на 2021-22 гг.

Месяц	Место проведения	Тема	Примечат ие
	проведения	Знакомство. Введение в образовательную	
		программу, техника безопасности, знакомство с	
		оборудованием мобильного кванториума.	
		Идея. Методика формирования идеи.	
		Урок рисования (перспектива, линия, штриховка) в	
		приложении Scetchbook Autodesk.	
		Работа с графическим планшетом.	
		Создание векторов в графическом редакторе Corel	
		Draw.	
		Работа на лазерном станке.	
		Установочное занятие. Знакомство с аддитивными технологиями.	
		Работа в программе по 3D моделированию Blender.	
		Работа на 3D-принтере.	
		водное занятие по промышленной	
		робототехнике.	
		Знакомство с конструкторами. Сборка роботов.	
		Алгоритм работы датчиков Lego EV3:	
		Датчик касания.	
		Гироскопический датчик.	
		Ультразвуковой датчик.	
		Датчик цвета.	
		Итоговое занятие	

2.6. Список литературы:

Промдизайн

- 1. Адриан Шонесси. Как стать дизайнером, не продав душу дьяволу / Питер.
- 2. Фил Кливер. Чему вас не научат в дизайн-школе / Рипол Классик
- 3. Майкл Джанда. Сожги своё портфолио! То, чему не учат в дизайнерских школах / Питер.
- 4. Жанна Лидтка, Тим Огилви. Думай как дизайнер. Дизайн-мышление для менеджеров / Манн, Иванов и Фербер.
- 5. Koos Eissen, Roselien Steur. Sketching: Drawing Techniques for Product Designers / Hardcover, 2009.
- 6. Kevin Henry. Drawing for Product Designers (Portfolio Skills: Product Design) / Paperback, 2012.
- 7. Bjarki Hallgrimsson. Prototyping and Modelmaking for Product Design (Portfolio Skills) / Paperback, 2012.
- 8. Kurt Hanks, Larry Belliston. Rapid Viz: A New Method for the Rapid Visualization of Ideas.
- 9. Jim Lesko. Industrial Design: Materials and Manufacturing Guide.
- 10. Rob Thompson. Prototyping and Low-Volume Production (The Manufacturing Guides).
- 11. Rob Thompson. Product and Furniture Design (The Manufacturing Guides).
- 12. Rob Thompson, Martin Thompson. Sustainable Materials, Processes and Production (The Manufacturing Guides).
- 13. Susan Weinschenk. 100 Things Every Designer Needs to Know About People (Voices That Matter).
- 14. Jennifer Hudson. Process 2nd Edition: 50 Product Designs from Concept to Manufacture.
- 15. http://designet.ru/
- 16. http://www.cardesign.ru/
- 17. https://www.behance.net/
- 18. http://www.notcot.org/
- 19. http://mocoloco.com/

Проектирование

- 1. Koos Eissen, Roselien Steur. Sketching: Drawing Techniques for Product Designers / Hardcover, 2009.
- 2. Kevin Henry. Drawing for Product Designers (Portfolio Skills: Product Design) / Paperback, 2012.
- 3. https://www.youtube.com/channel/UCOzx6PA0tgemJl1Ypd_1FTA
- 4. https://vimeo.com/idsketching
- 5. https://www.pinterest.ru/search/pins/?q=design%20%20 sketching
- 6. https://www.behance.net/gallery/1176939/Sketching-Marker-Rendering

Изобретательство и инженерия

1. Альтшуллер Г.С. Найти идею. Введение в теорию решения изобретательских задач. — Новосибирск: Наука, 1986.

- 2. Иванов Г.И. Формулы творчества, или как научиться изобретать: кн. для учащихся ст. классов. М.: Просвещение, 1994.
- 3. Диксон Дж. Проектирование систем: изобретательство, анализ и принятие решений: пер. с англ. М.: Мир, 1969.
- John R. Dixon. Design Engineering: Inventiveness, Analysis and Decision Making. McGraw-Hill Book Company. New York. St. Louis. San Francisco. Toronto. London. Sydney. 1966.
- 4. Альтшуллер Г.С., Верткин И.М. Как стать гением: жизн. стратегия творч. личности. Мн: Белорусь, 1994.
- 5. Альтшуллер Г.С. Алгоритм изобретения. М: Московский рабочий, 1969.
- 6. Негодаев И.А. Философия техники: учебн. пособие. Ростов-на-Дону: Центр ДГТУ, 1997.

Моделирование

Три основных урока по «Компасу»

- https://youtu.be/dkwNj8Wa3YU
- https://youtu.be/KbSuL_rbEsI
- https://youtu.be/241IDY5p3W

VR rendering with Blender — VR viewing with VRAIS. https://www.youtube.com/watch?v=SMhGEu9LmYw — одно из многочисленных видео по бесплатному ПО Blender.

LEGO

https://www.lego.com/ru-ru/themes/mindstorms/learntoprogram" HYPERLINK "https://www.lego.com/ru-ru/tarntw.lego.com/ru-ru/themes/mindstorms/learntoprogram" HYPERLINK "https://www.lego.com/ru-ru/themes/mindstorms/learntoprogram" HYPERLINK "https://www.lego.com/ru-ru/themes/mindstorms/learntoprogram" s/learntoprogram" s/learntoprogram

Йошихито Исогава «Большая книга идей»: https://i-bricks.ru/yoshihito-isogawa/

Календарно-учебный график дистанционного обучения на 2021-22гг.

1) Знакомство. Введение в образовательную программу, техника безопасности, знакомство с оборудованием мобильного кванториума.	2) Урок рисования (перспектива, линия, штриховка) в приложении Scetchbook Autodesk.	3) Урок рисования (перспектива, линия, штриховка) в приложении Scetchbook Autodesk.	Примечание
4) Создание векторов в графическом редакторе Corel Draw.	5) Создание векторов в графическом редакторе Corel Draw.	6) Работа на лазерном станке.	Примечание
7) Установочное занятие. Знакомство с аддитивными технологиями.	8) Работа в программе по 3D моделированию Blender	9) Работа на 3D- принтере.	Примечание
10) Вводное занятие по промышленной робототехнике. Ознакомление с курсом обучения. Основы изобретательства и инженерии. ТБ.	11) Знакомство с конструкторами.	12) Алгоритм работы датчиков Lego. Датчик касания	Примечание
13) Гироскопический датчик	14) Датчик цвета	15) Ультразвуковой датчик	Примечание
16) Датчик цвета	17) Ультразвуковой датчик	18) Итоговое занятие. Подведение итогов работы за период обучения	Примечание